
Source: http://lod-cloud.net

AI4INDUSTRY SUMMER SCHOOL

KIT – The Research University in the Helmholtz Association www.kit.edu

Distributed Knowledge Graphs IV
Data Integration, Link Following, and Programming in Rules

Dr. Tobias Käfer

2

Creative Commons Licensing

The slides have been prepared by Tobias Käfer, Andreas Harth, and

Lars Heling

This content is licensed under a Creative Commons Attribution 4.0

International license (CC BY 4.0):

http://creativecommons.org/licenses/by/4.0/

Distributed Knowledge Graphs IV: Rules for Many Purposes | Dr. Tobias Käfer

http://creativecommons.org/licenses/by/4.0/

3

Agenda

Rules for:

Data Integration

Link following

Programming

Distributed Knowledge Graphs IV: Rules for Many Purposes | Dr. Tobias Käfer

4

Web Standards

Data providers publish data on web servers

Data consumers access data with user agents

Resource Description Framework

Graph-structured data: nodes (URIs, literals, blank nodes) and edges

(URIs)

Interlink information (relationships)

How can groups of people use RDF to

encode a shared understanding of a domain,

organise knowledge in a machine-processable way and

give meaning to data that can be exploited?

Distributed Knowledge Graphs IV: Rules for Many Purposes | Dr. Tobias Käfer

6

Ontology in Informatics

“An Ontology is a

formal specification > interpretable by machines

of a shared > based on consensus

conceptualisation > describes terminology

of a domain of interest” > models a specific topic

Studer, Benjamins and Fensel (1998) based on Gruber (1993) and Borst

(1997)

An ontology is an engineering artefact, consisting of:

A specific vocabulary (set of terms - URIs and literals) used to describe a

certain reality, plus

A set of explicit assumptions regarding the intended meaning of the

vocabulary

Distributed Knowledge Graphs IV: Rules for Many Purposes | Dr. Tobias Käfer

7

Ontology Spectrum

Less expressive More expressive

From 99 AAAI panel with Gruninger,

Lehmann, McGuinness, Ushold, Welty,

2000 Dagstuhl talk by McGuinness

Distributed Knowledge Graphs IV: Rules for Many Purposes | Dr. Tobias Käfer

9

Vocabularies and

Vocabulary Descriptions/Ontologies

Vocabularies are sets of terms, eg.

Individuals:
Entities identified via a URI or blank node; a vocabulary description may

include descriptions of identity (comes later)

Classes:
Sets of individuals identified via URIs or blank nodes; a vocabulary

description may include the characteristics of classes

Properties:
Properties identified via URIs; a vocabulary description may include the

characteristics of properties

Ontologies (vocabulary descriptions) are collections of terms together

with their (logically) defined meaning

Distributed Knowledge Graphs IV: Rules for Many Purposes | Dr. Tobias Käfer

10

Core Semantic Web Vocabularies

To bootstrap meaning of vocabulary terms, we could use terms that are

widely agreed; how about we use mathematics?

The W3C standardised fundamental vocabularies (based on

mathematics) that can be used to express other vocabularies.

RDF1: We consider the RDF vocabulary, i.e., the URIs defined as part

of the RDF W3C Recommendation.

RDFS2: We examine RDF Schema, a simple ontology language that

offers means to describe characteristics of classes and properties.

Throughout the slides, assume the following prefix declarations:

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .

@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .

@prefix : <#> .

1 https://www.w3.org/TR/rdf11-primer/
2 https://www.w3.org/TR/rdf-schema/

Distributed Knowledge Graphs IV: Rules for Many Purposes | Dr. Tobias Käfer

https://www.w3.org/TR/rdf11-primer/
https://www.w3.org/TR/rdf-schema/

11

Why Formal Semantics?

After introduction of RDF and RDFS, critcism of tool developers:

different tools were incompatible (despite the existing specification)

E.g.:

Same RDF document

Same entailment relation

Different results

Thus, a model-theoretic semantics was defined for entailment:

provides a formal specification of when truth is preserved by

transformations of RDF or operations which derive RDF triples from other

RDF triples (logical consequence).

Distributed Knowledge Graphs IV: Rules for Many Purposes | Dr. Tobias Käfer

12

A Classical Example for Entailment

Premise: All men are mortal

Premise: Socrates is a man

Conclusion: Socrates is mortal

In RDF using RDFS vocabulary:

@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .

@prefix : <#> .

:Man rdfs:subClassOf :Mortal . # premise

:Socrates a :Man . # premise

:Socrates a :Mortal . # conclusion

Photo from Wikipedia

Distributed Knowledge Graphs IV: Rules for Many Purposes | Dr. Tobias Käfer

13

Layered Entailment

Higher expressivity  More logical conclusions (entailments) and higher computational complexity.

Defined mathematically via sets and functions using model theory

Rules as way to implement the mentioned entailment regimes.

expressivity

OWL

Distributed Knowledge Graphs IV: Rules for Many Purposes | Dr. Tobias Käfer

14

Layered Entailment

Higher expressivity  More logical conclusions (entailments) and higher computational complexity.

Defined mathematically via sets and functions using model theory

Rules as way to implement the mentioned entailment regimes.

expressivity

OWL

Distributed Knowledge Graphs IV: Rules for Many Purposes | Dr. Tobias Käfer

Interesting for

bootstrapping

the definitions

via sets and

functions

15

Layered Entailment

Higher expressivity  More logical conclusions (entailments) and higher computational complexity.

Defined mathematically via sets and functions using model theory

Rules as way to implement the mentioned entailment regimes.

expressivity

OWL

Distributed Knowledge Graphs IV: Rules for Many Purposes | Dr. Tobias Käfer

Tells you how to

formally define

typed literals

and when values

are the same

20

RDF VOCABULARY AND

ENTAILMENT

Distributed Knowledge Graphs IV: Rules for Many Purposes | Dr. Tobias Käfer

21

RDF Vocabulary

The RDF vocabulary allows to make basic statements about resources

and triples

The following table lists all RDF terms, other than the container

membership properties rdf:_1, rdf:_2, rdf:_3 ...

Class URIs Property URIs Datatype URIs Instance URIs

rdf:Property rdf:type rdf:langString rdf:nil

rdf:List rdf:first rdf:HTML

rdf:Bag rdf:rest rdf:XMLLiteral

rdf:Alt rdf:value rdf:PlainLiteral

rdf:Seq rdf:subject

rdf:Statement rdf:predicate

rdf:object

Distributed Knowledge Graphs IV: Rules for Many Purposes | Dr. Tobias Käfer

22

Formal Instances (rdf:type)

The URI rdf:type allows to specify that a resource is an instance of

something

For example, the following describes :Berlin as being a :City, as
follows:

:Berlin rdf:type :City .

What was the shortcut

for rdf:type in the Turtle

syntax?

Distributed Knowledge Graphs IV: Rules for Many Purposes | Dr. Tobias Käfer

23

rdf:Property

The term rdf:Property denotes the resource that contains as

members all resources occurring on predicate position in RDF triples

Given an RDF graph

:s :p :o .

we can conclude

:p rdf:type rdf:Property .

Distributed Knowledge Graphs IV: Rules for Many Purposes | Dr. Tobias Käfer

24

Collections aka rdf:Lists

A collection is a closed group of elements

Example: Editors of the RDFS spec “Brickley”, “Guha”, “McBride”

:RDFS_Spec :editors _:genid1 .

_:genid1 rdf:first "Brickley" .

_:genid1 rdf:rest _:genid2 .

_:genid2 rdf:first "Guha" .

_:genid2 rdf:rest _:genid3 .

_:genid3 rdf:first "McBride" .

_:genid3 rdf:rest rdf:nil .
:RDFS_

Spec

_:genid1 _:genid3_:genid2 rdf:nil

“Guha”“Brickley” “McBride”

:editors

rdf:first

rdf:rest

rdf:first

rdf:rest

rdf:first

rdf:rest

rdf:nil closes

the collection

Distributed Knowledge Graphs IV: Rules for Many Purposes | Dr. Tobias Käfer

25

RDF Lists

Lists can only appear in subject or object position of a triple

The class rdf:List contains the RDF lists

Turtle provides a syntax abbreviation for specifying collections (“lists
structures”) by enclosing the RDF terms with ()

#the object of this triple is the RDF collection blank node

:RDFS_Spec :editors (“Brickley” “Guha” “McBride”) .

Distributed Knowledge Graphs IV: Rules for Many Purposes | Dr. Tobias Käfer

27

RDF Axiomatic Triples

What is an axiom?

A self-evident or universally recognised truth 1

An established rule, principle, or law 1

The following triples have to be true in any RDF interpretation, by

definition:

1 http://www.thefreedictionary.com/axiom

Since the elements of a container

may be infinite, the application of

the axiomatic triples results in an

infinite interpretation

Distributed Knowledge Graphs IV: Rules for Many Purposes | Dr. Tobias Käfer

http://www.thefreedictionary.com/axiom

28

RDF Entailment Patterns

The following entailment patterns can be used as an easy way to apply

the RDF entailment rules to a graph

Variables are denoted with a “?” (as in SPARQL)

The patterns are applied by assigning values to the variables in the “If”

statement and adding (inferring) the “Then” statement

Patterns*:

Alternative pattern to rdfD1 (assuming generalised RDF)

For the following examples we consider our graph: http://example.org/cities.ttl

If … Then …

rdfD1 ?x ?p "sss"^^ddd . ?x ?p _:n . _:n rdf:type ddd .

rdfD2 ?x ?p ?y . ?p rdf:type rdf:Property .

* "sss" represents some Unicode string

If … Then …

GrdfD1 ?x ?p "sss"^^ddd . "sss"^^ddd rdf:type ddd .

Distributed Knowledge Graphs IV: Rules for Many Purposes | Dr. Tobias Käfer

31

RDFS VOCABULARY AND

ENTAILMENT

Distributed Knowledge Graphs IV: Rules for Many Purposes | Dr. Tobias Käfer

32

RDFS Intuition and Vocabulary

The RDFS vocabulary allows to make statements about classes of

things and properties and to provide documentation to resources

RDFS entailment is a lot about the semantics of those classes and

properties

RDFS terms are:

1 http://www.w3.org/TR/rdf-schema/

rdfs:domain
rdfs:range
rdfs:subClassOf
rdfs:subPropertyOf
rdfs:member
rdfs:comment
rdfs:seeAlso
rdfs:isDefinedBy
rdfs:label

rdfs:Resource
rdfs:Literal
rdfs:Datatype
rdfs:Class
rdfs:Container
rdfs:ContainerMembershipProperty

Properties: Classes:

Distributed Knowledge Graphs IV: Rules for Many Purposes | Dr. Tobias Käfer

http://www.w3.org/TR/rdf-schema/

33

Classes – Analogy to Set Theory

Individuals represent elements of a set

Classes represent a set that is identified via a URI or a blank node

India

Germany

Spain

Brazil

Mexico

Country

Distributed Knowledge Graphs IV: Rules for Many Purposes | Dr. Tobias Käfer

34

To define the class:

rdf:type rdfs:Class

To relate instances to the class:

rdf:type

Classes: Example (1)

The class of countries

Country

India

Germany

Spain

Brazil

:Country rdf:type rdfs:Class .

:India rdf:type :Country .
:Germany rdf:type :Country .
:Spain rdf:type :Country .
:Brazil rdf:type :Country .

URI of the class

Instances of the class

Distributed Knowledge Graphs IV: Rules for Many Purposes | Dr. Tobias Käfer

35

Class Hierarchies

Given several classes, we can specify a hierarchical relationship

between them: the subclass relation

In RDFS, a class may have several subclasses, and a class can be a

subclass of several (super)classes

Example:

We have two classes: :Country and :EuropeanCountry

We want to say that everything that is a European country is also a country

That is, :EuropeanCountry is a subclass of :Country

We use rdfs:subClassOf to specify the subclass relationship:

:EuropeanCountry rdfs:subClassOf :Country .

Distributed Knowledge Graphs IV: Rules for Many Purposes | Dr. Tobias Käfer

36

Class Hierarchies – Analogy to Set Theory

rdf:type corresponds to ∈

rdfs:subClassOf corresponds to ⊆

India

Germany

Spain

Brazil

Mexico

Country

European

Country

Distributed Knowledge Graphs IV: Rules for Many Purposes | Dr. Tobias Käfer

37

RDFS Axiomatic Triples

Distributed Knowledge Graphs IV: Rules for Many Purposes | Dr. Tobias Käfer

38

RDFS Entailment Patterns
If… Then…

rdfs1 Any URI ddd in D ddd rdf:type rdfs:Datatype .

rdfs2 ?p rdfs:domain ?x . ?y ?p ?z . ?y rdf:type ?x .

rdfs3 ?p rdfs:range ?x . ?y ?p ?z . ?z rdf:type ?x .

rdfs4a ?x ?p ?z . ?x rdf:type rdfs:Resource .

rdfs4b ?y ?p ?z . ?z rdf:type rdfs:Resource .

rdfs5 ?x rdfs:subPropertyOf ?y .
?y rdfs:subPropertyOf ?z .

?x rdfs:subPropertyOf ?z .

rdfs6 ?x rdf:type rdf:Property . ?x rdfs:subPropertyOf ?x .

rdfs7 ?p2 rdfs:subPropertyOf ?p1 .
?x ?p2 ?y.

?x ?p1 ?y .

rdfs8 ?x rdf:type rdfs:Class . ?x rdfs:subClassOf rdfs:Resource .

rdfs9 ?x rdfs:subClassOf ?y .
?z rdf:type ?x .

?z rdf:type ?y .

rdfs10 ?x rdf:type rdfs:Class . ?x rdfs:subClassOf ?x .

rdfs11 ?x rdfs:subClassOf ?y .
?y rdfs:subClassOf ?z .

?x rdfs:subClassOf ?z .

rdfs12 ?x rdf:type rdfs:ContainerMembershipProperty. ?x rdfs:subPropertyOf rdfs:member .

rdfs13 ?x rdf:type rdfs:Datatype . ?x rdfs:subClassOf rdfs:Literal .

Distributed Knowledge Graphs IV: Rules for Many Purposes | Dr. Tobias Käfer

39

RDFS Entailment Patterns – rdfs9

Example:

:City rdfs:subClassOf :Location .

?x rdfs:subClassOf ?y .

:Pankow rdf:type :Location .

?z rdf:type ?y .

If:

Then:

:Pankow rdf:type :City .

?z rdf:type ?x .

Distributed Knowledge Graphs IV: Rules for Many Purposes | Dr. Tobias Käfer

40

MORE EXPRESSIVE

ENTAILMENT REGIMES

Distributed Knowledge Graphs IV: Rules for Many Purposes | Dr. Tobias Käfer

41

Extending RDFS with other useful features

OWL is a fairly expressive ontology language

RDFS plus, RDFS 3.0, OWL LD „extend“ RDFS entailment with the

semantics of some terms from OWL such as:

owl:sameAs

owl:equivalentProperty

owl:inverseOf

…

Distributed Knowledge Graphs IV: Rules for Many Purposes | Dr. Tobias Käfer

42

IMPLEMENTING ENTAILMENT

Distributed Knowledge Graphs IV: Rules for Many Purposes | Dr. Tobias Käfer

43

Approaches for Evaluating Entailment Patterns

Examples for when users are interested in the derived knowledge

Queries, eg. of downstream applications

Conditions for actions outside the realm of the

Approaches:

Materialization / forward chaining

Query rewriting / backward chaining

Hybrid approaches

Distributed Knowledge Graphs IV: Rules for Many Purposes | Dr. Tobias Käfer

44

Algorithm for Materialisation:

Extend the Graph with Inferred Triples

Require: assertions ▷ Graph

Require: rules ▷ Derivation rules

var data, oldData: set<triple>

var fixpointReached: boolean

data.clear()

data.add(assertions)

repeat ▷ Loop for determining the fixpoint
fixpointReached true

for rule : rules do

if rule.matches(data) then

oldData = data.copy()

if rule.type==derivation then
data.add(rule.match(data).data)

end if

if ! data.copy().remove(oldData).isEmpty() then
fixpointReached  false

end if

end if

end for

until fixpointReached

Distributed Knowledge Graphs IV: Rules for Many Purposes | Dr. Tobias Käfer

46

Notation3 Rule Syntax

We introduce Notation3 (N3), a superset of Turtle syntax

N3 extends the RDF data model with

variables (prefixed with a ?) and

graph quoting (via {}) for subject and object of a triple

Together with a URI for implication

(<http://www.w3.org/2000/10/swap/log#implies>, shortcut: =>),

we can encode rules in N3 syntax.

Distributed Knowledge Graphs IV: Rules for Many Purposes | Dr. Tobias Käfer

47

Notation3 Derviation Rules

A N3 rule is of the form { body } => { head } .

The body of a rule (the „if“ part) is also called antecedent

The head of a rule (the „then“ part) is also called consequent

The body is a set of triple patterns: a BGP

The head is a graph template

Distributed Knowledge Graphs IV: Rules for Many Purposes | Dr. Tobias Käfer

48

Example: RDFS Entailment Patterns as Rules

@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .

{ ?x rdfs:subPropertyOf ?y .
?y rdfs:subPropertyOf ?z . } => { ?x rdfs:subPropertyOf ?z . } .

Entailment pattern rdfs5 as derivation rule:

Distributed Knowledge Graphs IV: Rules for Many Purposes | Dr. Tobias Käfer

49

Exercise: Query Evaluation with Materialization

Given the following RDF graph G available at

http://example.org/persons and the SPARQL expression E. Assume all

the prefix definitions.

Query Q:

SELECT ?p WHERE { ?p a foaf:Agent }

Entailment regime R with the following set of rules:
{ { ?x owl:equivalentClass ?y . } => { ?y owl:equivalentClass ?x . },

{ ?x owl:equivalentClass ?y . ?a rdf:type ?x . } => { ?a rdf:type ?y .} }

Materialise R on the graph G and evaluate Q.

:Magneto a foaf:Person ;
foaf:name "Max Eisenhardt" .

foaf:Person rdfs:subClassOf foaf:Agent .
foaf:Person owl:equivalentClass dbo:Person .

Distributed Knowledge Graphs IV: Rules for Many Purposes | Dr. Tobias Käfer

50

Agenda

Rules for:

Reasoning

Link following

Programming

Distributed Knowledge Graphs IV: Rules for Many Purposes | Dr. Tobias Käfer

51

How to Combine Link-Following and Querying?

The Linked Data principles point towards combining web architecture

with knowledge representation

But all the bits and pieces we have seen so far do not fit yet:

We can dereference URIs of things via HTTP, view the resulting RDF

and follow links (e.g., in the RDF browser)

OR

We can query RDF documents with SPARQL given a fixed set of URIs

to documents in FROM/FROM NAMED clauses

BUT

How how do we query Linked Data while following links?

Distributed Knowledge Graphs IV: Rules for Many Purposes | Dr. Tobias Käfer

52

General User Agent Model

Characteristics of a generic user agent

on the web (e.g., web browser):

1. The user agent starts its interaction based on a

specific seed URI

2. The user agent performs HTTP requests on URIs and

parses the response

3. Based on the response the user agent has one or

multiple choices as to which interaction to perform next

4. The user agent decides which link to follow and

initiates a new request

http://slideplayer.com/slide/8080871/

Distributed Knowledge Graphs IV: Rules for Many Purposes | Dr. Tobias Käfer

54

Reduction to What we Learnt:

Crawl-Index-Serve

Crawl-index-serve architecture for Linked Data:

Crawl Linked Data (on the level of documents, parse RDF into quads), specify
the amount of hops for expansion

Load the resulting RDF Dataset (quads) into a SPARQL store

Serve query solutions from the SPARQL store

Materialising the data (crawling, indexing) takes time

Indexes of Linked Data get outdated [1]

Indiscriminate expansion of links

Requires many systems (crawler, SPARQL store), server capacity

Possibly too much overhead if users are interested in the solution to a
single query

How about more clever user agents? That run on people’s
computers?

That access live data?

[1] Käfer, Umbrich, Abdelgayed, O‘Byrne, Hogan: Observing Linked Data Dynamics. Proc. 11th Extended Semantic Web Conference (2013).

Distributed Knowledge Graphs IV: Rules for Many Purposes | Dr. Tobias Käfer

55

Linked Data Principles1

1. Use URIs as names for things

2. Use HTTP URIs so that people can look up those names.

3. When someone looks up a URI, provide useful information, using the

standards (RDF*, SPARQL)

4. Include links to other URIs, so that they can discover more things.

1 http://www.w3.org/DesignIssues/LinkedData.html

Tim Berners-Lee presenting Linked Data. TED CC-BY-ND

Distributed Knowledge Graphs IV: Rules for Many Purposes | Dr. Tobias Käfer

http://www.w3.org/DesignIssues/LinkedData.html

56

Two Perspectives on the Linked Data Principles

Server (Publisher)

1. Coin URIs to name things.

2. Use a HTTP server to provide

access to documents.

3. Upon receiving a request for a

URI, the server returns useful

information (about the URI in

the request) in RDF and RDF

Schema.

4. The “useful information” the

server returns in the RDF

document includes links to

other URIs (on other servers).

User Agent (Consumer)

1. Assume URIs as names for

things.

2. User agents look up HTTP

URIs.

3. User agents process

RDF/RDFS documents

containing useful information

and provide the ability to

evaluate SPARQL queries.

4. User agents can discover more

things via accessing links to

other URIs.

















Distributed Knowledge Graphs IV: Rules for Many Purposes | Dr. Tobias Käfer

59

Operating on a Fixed RDF Dataset

Until now, both in querying and with entailment, we have assumed that

the data over which we operate is fixed at the beginning of the

processing.

That is, we have assumed a fixed RDF Dataset.

Triple

Distributed Knowledge Graphs IV: Rules for Many Purposes | Dr. Tobias Käfer

60

Operating on the Web as RDF Dataset

We would like to use the entire Linked Data web, i.e., a huge RDF

dataset Web, as basis for querying.

But the web is too big; downloading the entire web is impractical.

One of the core features of the web are hyperlinks.

A user agent starts from an entry point and then follows links.

Following links can lead to hitherto unknown servers, with unknown

data of unknown schema.

How can we specify a (finite) RDF dataset in a flexible way?

Distributed Knowledge Graphs IV: Rules for Many Purposes | Dr. Tobias Käfer

61

Dereferencing URIs1

We define ways for accessing RDF graphs published on the web as

Linked Data

Linked Data provides a combination of knowledge representation

language (RDF, RDFS) and web architecture (HTTP)

A key characteristic of Linked Data is the tight connection between an

identifier and a source, i.e., the name for a thing2 is associated with the

document where one can find related information

1 See also in Chapter 2
2 “non-information” resource, not defined in any RFC, which only know “other resources” and “information resources”.

Distributed Knowledge Graphs IV: Rules for Many Purposes | Dr. Tobias Käfer

66

Motivation for Request Rules

We want to specify an RDF dataset constructed during query

evaluation

Start with a seed URI, and then follow hyperlinks other data sources

Given a set of links within a dataset we need to specify:

Which links to follow?

Order of following links?

How far to follow links?

Request rules as a way to specify traversal

Distributed Knowledge Graphs IV: Rules for Many Purposes | Dr. Tobias Käfer

67

Representing HTTP Requests in RDF

To model HTTP requests in RDF we require a vocabulary for HTTP

requests (and headers)

Namespace for the core terms of HTTP vocabulary1 in RDF:

We also make use of a vocabulary for HTTP methods and HTTP

headers

Using the HTTP vocabulary, we are able to represent any kind of

HTTP-interaction using RDF

http://www.w3.org/2011/http#

1http://www.w3.org/TR/HTTP-in-RDF10/

Distributed Knowledge Graphs IV: Rules for Many Purposes | Dr. Tobias Käfer

68

HTTP Vocabulary: Example

Let us consider the simple request:

Represented using the HTTP vocabulary:

GET /article/420 HTTP/1.1

Host: example.org

Accept: text/turtle

@prefix http: <http://www.w3.org/2011/http#> .
@prefix httpm: <http://www.w3.org/2011/http-methods#> .
@prefix httph: <http://www.w3.org/2011/http-headers#> .

[] a http:Request;
http:requestURI "/article/420";
http:httpVersion "1.1";
http:mthd httpm:GET;
http:headers ([http:hdrName httph:host ;

http:fieldValue "example.org"]
[http:hdrName httph:accept ;

http:fieldValue "text/turtle"]) .

Distributed Knowledge Graphs IV: Rules for Many Purposes | Dr. Tobias Käfer

69

Syntax of Request Rules in Notation3

Request with both fixed and variable request targets can appear as the

head of a request rule

Form:

Properties:

Existential: head contains blank nodes

Safe: all variable are part of both head and body of the rule

body head

Distributed Knowledge Graphs IV: Rules for Many Purposes | Dr. Tobias Käfer

70

Request Rule – Example 1

Request URIs of people that Andreas knows

Request rules allow for fine-grained manner to determine

which resources to retrieve and which links to follow

Distributed Knowledge Graphs IV: Rules for Many Purposes | Dr. Tobias Käfer

71

Request Rule – Example 2

The following rule dereferences all class URIs that occur in the data:

@prefix http: <http://www.w3.org/2011/http#> .
@prefix httpm: <http://www.w3.org/2011/http-methods#> .

{
?s a ?c .

} => {
[] http:method httpm:GET ;

http:requestURI ?c .
} .

Distributed Knowledge Graphs IV: Rules for Many Purposes | Dr. Tobias Käfer

72

Algorithm for

Constructing

an RDF

Dataset

Based on

Request

Rules

(Integrated

using

Derivation

Rules)

Require: assertions ▷ Graph

Require: rules ▷ Derivation and GET request rules

var data, oldData: set<triple>

var fixpointReached: boolean

data.clear()

data.add(assertions)

repeat ▷ Loop for determining the fixpoint
fixpointReached <- true

for rule : rules do

if rule.matches(data) then

oldData = data.copy()

if rule.type==derivation then
data.add(rule.match(data).data)

else ▷ So the rule must be an interaction rule
if rule.match(data).request.type==GET then

data.add(rule.match(data).request.execute())

end if

end if

if ! data.copy().remove(oldData).isEmpty() then
fixpointReached <- false

end if

end if

end for

until fixpointReached

Distributed Knowledge Graphs IV: Rules for Many Purposes | Dr. Tobias Käfer

73

Linked Data-Fu Overview

Approach for accessing, integrating, querying and manipulating web

data

The language allows developers to specify interactions using rules

The engine executes desired interactions in parallel

Derivation rules support reasoning

constructs, e.g., transitivity,

reflexivity of properties

Request rules specify how and

when to interact with resources,

i.ie., retrieve the state of

resources (sense) or manipulate

the state of resources (act)

http://linked-data-fu.github.io/

Distributed Knowledge Graphs IV: Rules for Many Purposes | Dr. Tobias Käfer

Stadtmüller, Speiser, Harth, Studer: Data-Fu: a language and an interpreter for interaction with read/write linked data. WWW 2013

http://linked-data-fu.github.io/

74

Linked Data-Fu

A system to

execute programs with request rules to construct a RDF dataset

apply entailment patterns expressed in Notation3

process SPARQL queries, including entailment, over the RDF dataset

created via link-following

Linked Data-Fu programs run as user agents

Request rules can specify link-following based on HTTP GET requests

With allowing additional HTTP requests (PUT, POST, DELETE), the user

agents can effect change in resource state

Distributed Knowledge Graphs IV: Rules for Many Purposes | Dr. Tobias Käfer

75

Agenda

Rules for:

Reasoning

Link following

Programming

Distributed Knowledge Graphs IV: Rules for Many Purposes | Dr. Tobias Käfer

76

From Linked Data to Read-Write Linked Data

With HTTP GET requests, one can implement systems that answer

queries on data published on the web

But HTTP has more request methods:

HTTP POST is used on the web to handle HTML forms and can be used

to create resources

HTTP PUT can be used to overwrite resource state

HTTP DELETE can be used to delete resources

With POST, GET, PUT and DELETE, one can implement applications

that require CRUD (create-read-update-delete) operations on web

architecture

Distributed Knowledge Graphs IV: Rules for Many Purposes | Dr. Tobias Käfer

79

Putting the Web back into the Semantic Web

Linked Data Platform (W3C

recommendation specified led by

IBMers)

Read-Write interaction with Linked

Data resources and collections of

Linked Data resources

Solid: Social Linked Data

Conventions and tools (mainly

JavaScript) for building decentralised

social applications based on Read-

Write Linked Data

Users store personal data in "pods"

(personal online data stores) hosted

wherever the user desires

Web of Things

The article in the Scientific American is a lot about ontologies

Distributed Knowledge Graphs IV: Rules for Many Purposes | Dr. Tobias Käfer

81

Programming User Agents: ASM4LD [0]

Aim: Execution of agent specifications on Read-Write Linked Data

Inspired by Simple Reflex Agents [1]

Based on:

Abstract State Machines [2]

Model-theoretics semantics of RDF

Message semantics of HTTP

In a nutshell:

while(true):

sense()

think()

act()

[0] Käfer & Harth: Rule-based Programming of User Agents for Linked Data. LDOW@WWW 2018

[1] Russell & Norvig: Artificial Intelligence – A Modern Approach. Prentice Hall (2003)

[2] Gurevich:. "Evolving algebras 1993: Lipari guide." Specification and validation methods (1995)

{ }=>{ }.

Distributed Knowledge Graphs IV: Rules for Many Purposes | Dr. Tobias Käfer

82

Algorithm to

combine

materialisation,

link following,

and

programming

Require: assertions ▷ Graph

Require: rules ▷ Derivation and request rules

var data, oldData: set<triple>

var fixpointReached: Boolean

var unsafeRequests: set<request>

while true do ▷ Loop of the ASM steps
unsafeRequests.clear()

data.clear()

data.add(assertions)

repeat ▷ Loop for determining the fixpoint and the update set
fixpointReached <- true

for rule : rules do

if rule.matches(data) then

oldData = data.copy()

if rule.type==derivation then
data.add(rule.match(data).data)

else ▷ So the rule must be an interaction rule
if rule.match(data).request.type==GET then

data.add(rule.match(data).request.execute())

else

unsafeRequests.add(rule.match(data).request)

end if

end if

if ! data.copy().remove(oldData).isEmpty() then
fixpointReached <- false

end if

end if

end for

until fixpointReached

for request : unsafeRequests do ▷ Enacting the update set
request.execute()

end for

end while

Distributed Knowledge Graphs IV: Rules for Many Purposes | Dr. Tobias Käfer

83

Turn the Light On in Linked Data-Fu

Loop
{ [] a http:Request ;

http:hasMethod httpM:GET ;
http:requestURI </ambient/light> . }

{ [] a http:Request ;
http:hasMethod httpM:GET ;
http:requestURI </relay/1> . }

{ </ambient/light> rdf:value ?val .
?val math:lessThan 0.5 .
</relay/1#r> :isOn false . }

=>
{ [] a http:Request ;

http:hasMethod httpM:PUT ;
http:requestURI </relay/1> ;
http:body
{ </relay/1#r> :isOn true . } . } .

SENSE:

Retrieve the

world state

ACT:

…manipulate

the world state

THINK:

Conditionally…

{

<

0
.
5
}
=
>

Distributed Knowledge Graphs IV: Rules for Many Purposes | Dr. Tobias Käfer

84

Higher-level Ways of Programming Agents

We can use ASM4LD to give operational semantics to ontologies

WiLD – Workflows in Linked Data

A flow-based workflow language

Käfer and Harth: „Specifying, Monitoring, and Executing Workflows in

Linked Data“. Proc. ISWC 2018.

GSM4LD

An artifact-centric workflow language

Jochum, Nürnberg, Aßfalg, Käfer: „Data-Driven Workflows for Specifying

and Executing Agents in an Environment of Reasoning and RESTful

Systems”. Proc. WS AI4BPM @ BPM 2019.

Distributed Knowledge Graphs IV: Rules for Many Purposes | Dr. Tobias Käfer

85

We encoded in Linked Data-Fu rules:

Movement of the avatar according to

Kinect data

Detection of user gestures

Movement of the map according to

gestures

Loading of concert data from the web

Data integration between VR RWLD API,

concert LD API, Kinect LD API

Execution at Kinect sensor refresh rate

(30Hz)

Load nearby

concerts

from the

Web

Request

more

information

on concert

Move

the

map

Kinect tracks user
Avatar moves accordingly

Gestures trigger actions

User

Kinect

3 Laptops:

• Virtual Reality Read-Write Linked Data API

• Kinect Linked Data API

• Linked Data-Fu w/ web access

Keppmann, Käfer, Stadtmüller, Schubotz, Harth: "High Performance Linked Data Processing for Virtual Reality Environments". P&D ISWC 2014.

Distributed Knowledge Graphs IV: Rules for Many Purposes | Dr. Tobias Käfer

Integration of Distributed Systems using Linked

Data: Example: a Virtual Reality System

90

THANKS FOR YOUR

ATTENTION!

Distributed Knowledge Graphs IV: Rules for Many Purposes | Dr. Tobias Käfer

